Меню


Гидростатические транмиссии, основы проектирования

Гидростатические транмиссии, основы проектирования  Принцип действия гидростатических трансмиссий (ГСТ) прост: насос, подключенный к первичному двигателю, создает поток для привода гидравлического мотора, который соединен с нагрузкой. Если объемы насоса и мотора постоянны, ГСТ просто выступает в качестве редуктора для передачи мощности от первичного двигателя к нагрузке. Однако в большинстве гидростатических трансмиссий используются регулируемые насосы или гидромоторы с переменным объемом или оба типа сразу, так что скорость, крутящий момент, или мощность можно регулировать.

В зависимости от конфигурации, гидростатическая трансмиссия может управлять нагрузкой в двух направлениях (прямой и реверс) с бесступенчатым изменением скорости между двумя максимумами при постоянных оптимальных оборотах первичного мотора.

ГСТ предлагают много важных преимуществ по сравнению с другими формами передачи энергии.

В зависимости от конфигурации гидростатическая трансмиссия имеет следующие преимущества:
  • передача большой мощности при малых размерах
    • малая инерционность
    • эффективно работает в широком диапазоне соотношений крутящего момента к скорости
    • поддерживает управление скоростью (даже при обратном ходе) независимо от нагрузки, в расчетных пределах
    • точно поддерживает заданную скорость при попутных и тормозящих нагрузках
    • может передавать энергию от одного первичного двигателя в разные места, даже если их положение и ориентация изменяется
    • может удерживать полную нагрузку без повреждения и с малыми потерями мощности.
    • Нулевая скорость без дополнительной блокировки
    • обеспечивает более быстрый отклик, чем механическая или электромеханическая трансмиссия.

    Существует два конструктивных типа гидростатической трансмиссии: интегрированный и раздельный. Раздельный тип применяется наиболее часто, так как позволяет передавать мощность на большие расстояния и в труднодоступные места. В этом типе насос соединен с первичным двигателем, двигатель соединен с нагрузкой, и сами насос и двигатель соединены трубами или РВД, рис. 2.
    Рис.2
    Какими бы ни были задачи, гидростатические трансмиссии должны быть разработаны для оптимального соответствия между двигателем и нагрузкой. Это позволяет двигателю работать на наиболее эффективной скорости и ГСТ соответствовать условиям эксплуатации. Чем лучше соответствие между входными и выходными характеристиками, тем эффективнее вся система.

    В конечном счете, гидростатическая система должна быть рассчитана на баланс между эффективностью и производительностью. Машина, предназначенная для достижения максимальной эффективности (высокий КПД), как правило, имеет вялую реакцию, которая снижает производительность. С другой стороны, машина с быстрой реакцией обычно имеет КПД ниже, так как запас мощности доступен в любое время, даже тогда, когда нет непосредственной необходимости для выполнения работы.

    Четыре функциональных типа гидростатических трансмиссий.

    Функциональные типы ГСТ различаются сочетаниями регулируемого или нерегулируемого насоса и мотора, что и определяет их эксплуатационные характеристики.
    В самой простой форме гидростатической трансмиссии используются насос и мотор с фиксированными объемами (рис. 3а). Хотя эта ГСТ является недорогой, ее не применяют из-за низкого КПД. Поскольку объем насоса фиксированный, то он должен быть рассчитан для привода мотора с максимальной установленной скоростью при полной нагрузке. Когда максимальная скорость не требуется, часть рабочей жидкости из насоса проходит через предохранительный клапан, превращая энергию в тепло.

    Рис.3

    Использование в гидростатической трансмиссии насоса с регулируемой подачей и гидромотора с постоянным объемом можно обеспечить передачу постоянного крутящего момента (рис. 3b). Выходной крутящий момент постоянен при любой скорости, так как зависит только от давления жидкости и объема гидромотора. Увеличение или уменьшение подачи насоса увеличивает или уменьшает скорость вращения гидромотора, а следовательно и мощность привода, в то время как крутящий момент остается постоянным.

    ГСТ с насосом постоянного объема и регулируемым гидромотором обеспечивает передачу постоянной мощности (рис. 3в). Так как величина потока, поступающего в гидромотор, постоянна, а объем гидромотора изменяется, для поддержания скорости и крутящего момента, то передаваемая мощность постоянна. Уменьшение объема гидромотора увеличивает скорость вращения, но уменьшает крутящий момент и наоборот.

    Наиболее универсальной гидростатической трансмиссией является комбинация регулируемого насоса и гидромотора с переменным объемом (рис. 3d). Теоретически, эта схема обеспечивает бесконечные соотношения крутящего момента и скорости к мощности. С гидромотором при максимальном объеме, изменяя мощность насоса, напрямую регулируем скорость и мощность, в то время как крутящий момент остается постоянным. Уменьшение объема гидромотора при полной подаче насоса увеличивает скорость мотора до максимума; крутящий момент изменяется обратно пропорционально скорости, мощность остается постоянной.

    Кривые на рис. 3d иллюстрируют два диапазона регулировки. В диапазоне 1, объем гидравлического мотора установлен на максимум; объем насоса увеличивается от нуля до максимума. Крутящий момент остается постоянным при увеличении объема насоса, но мощность и скорость увеличиваются.

    Диапазон 2 начинается, когда насос достигает максимального объема, который поддерживается постоянным, в то время как объем гидромотора уменьшается. В этом диапазоне, крутящий момент уменьшается по мере увеличения скорости, но мощность остается постоянной. (Теоретически, скорость гидромотора может быть увеличена до бесконечности, но с практической точки зрения, она ограничена динамикой.)

    Пример применения

    Предположим, что крутящий момент гидромотора 50 Н*м должен быть достигнут при 900 оборотах в минуту с ГСТ фиксированного объема.

    Требуемая мощность определяется из:
    P = T × N / 9550

    Где:
    P – мощность в кВт
    Т – крутящий момент Н*м,
    N – скорость вращения в оборотах в минуту.

    Таким образом, Р=50*900/9550=4,7 кВт

    Если мы возьмем насос с номинальным давлением

    100 бар, то подачу можем вычислить:

    Q=600*P/p

    Где:
    Q – подача в л/мин
    p – давление в бар

    Следовательно:

    Q= 600*4,7/100=28 л/мин.

    Затем выбираем гидромотр объемом 31 см3, который при такой подаче обеспечит частоту вращения примерно 900 об/мин.

    Проверяем по формуле крутящего момента гидромотора index.pl?act=PRODUCT&id=495


    На рис.3 показаны характеристики мощности / крутящего момента / скорости для насоса и мотора, при условии, что насос работает с постоянной подачей.

    Подача насоса максимальна при номинальной скорости, и насос подает все масло в гидромотор при постоянной скорости последнего. Но инерция нагрузки делает невозможным мгновенное ускорение мгновенно до максимальной скорости, так что часть потока насоса сливается через предохранительный клапан. (Рис. 3а иллюстрирует потери мощности при разгоне.) По мере того как гидромотор увеличивает скорость вращения, в него поступает все больше потока от насоса, и меньше масла уходит через предохранительный клапан. При номинальной скорости, все масло проходит через мотор.

    Крутящий момент постоянен, т.к. определяется настройкой предохранительного клапана, которая не меняется. Потеря мощности на предохранительном клапане это разница в мощности развиваемой насосом и мощности приходящей на гидромотор.

    Площадь под этой кривой представляет потерянную мощность, когда движение начинается или заканчивается. Также видна низкая эффективность для любой рабочей скорости ниже максимума. Гидростатические трансмиссии с фиксированными объемами не рекомендуются в приводах требующих частых запусков и остановок, или когда часто нет необходимости в полном крутящем моменте.

    Соотношение момент/скорость

    Теоретически, максимальная мощность, передаваемая гидростатической трансмиссией, определяется расходом и давлением.

    Тем не менее, в трансмиссиях с постоянной передаваемой мощностью (нерегулируемый насос и гидромотор с переменным объемом) теоретическая мощность делится на коэффициент момент/скорость, что и определяет выходную мощность. Наибольшая передаваемая мощность определяется при минимальной выходной скорости, при которой эта мощность должна быть передана.

    Рис.4

    Например, если минимальная скорость, представленная точкой А на кривой мощности рис. 4, составляет половину максимальной мощности (а момент силы при этом максимальный), то отношение момент – скорость составляет 2:1. Максимальная мощность, которая может быть передана, равна половине теоретического максимума.

    При скорости менее половины максимума, крутящий момент остается постоянным (на своем максимальном значении), но мощность уменьшается пропорционально скорости. Скорость в точке А является критической скоростью и определяется динамикой компонентов гидростатической трансмиссии. Ниже критической скорости, мощность уменьшается линейно (с постоянным крутящим моментом) до нуля при нулевых оборотах в минуту. Выше критической скорости, крутящий момент уменьшается по мере увеличения скорости, что обеспечивает постоянную мощность.

    Проектирование закрытой гидростатической трансмиссии.

    В описаниях закрытых гидростатических трансмиссий на рис. 3 мы сконцентрировались только на параметрах. На практике в ГСТ должны быть предусмотрены дополнительные функции.

    Дополнительные компоненты со стороны насоса.

    Рассмотрим, например, ГСТ с постоянным крутящим моментом, который наиболее часто используется в системах сервопривода рулевого управления с регулируемым насосом и нерегулируемым гидромотором (рис. 5а). Поскольку контур закрытый, утечки из насоса и мотора собираются в одну дренажную линию (рис. 5б). Объединенный дренажный поток поступает через маслоохладитель в бак. Маслоохладитель в гидростатическом приводе рекомендуется обязательно устанавливать при мощности более 40 л.с.
    Одним из наиболее важных компонентов в гидростатической трансмиссии закрытого типа является насос подкачки. Этот насос обычно встроен в основной, но может быть установлен отдельно и обслуживать группу насосов.
    Независимо от расположения, насос подкачки выполняет две функции. Во-первых, он предотвращает кавитацию основного насоса, компенсируя утечки жидкости насоса и гидромотора. Во-вторых, обеспечивает давление масла требуемое механизмам управления смещения диска.
    На рис. 5с показан предохранительный клапан А, который ограничивает давление насоса подкачки, которое обычно составляет 15-20 бар. Обратные клапаны В и С установленные навстречу друг к другу обеспечивают соединение всасывающей линии насоса подпитки с линией низкого давления.

    Рис. 5

    Дополнительные компоненты со стороны гидромотора.

    Типичная ГСТ закрытого типа должен иметь так же в своем составе два предохранительных клапана (D и Е на рис. 5d). Они могут быть встроены как в мотор, так и в насос. Эти клапаны выполняют функцию защиты системы от перегрузки, возникающей при резких изменениях нагрузки. Эти клапаны так же ограничивают максимальное давление, перепуская поток из линии высокого давления в линию низкого, т.е. выполняют ту же функцию, что и предохранительный клапан в открытых системах.

    В дополнение к предохранительным клапанам в системе установлен клапан «или» F, который давлением всегда переключен так, что соединяет линию низкого давления с предохранительным клапаном G низкого давления. Клапан G направляет избыточный поток насоса подкачки в корпус гидромотора, и затем этот поток через дренажную линию и теплообменник возвращается в бак. Это способствует более интенсивному обмену масла между рабочим контуром и баком, эффективнее охлаждая рабочую жидкость.

    Контроль кавитации в гидростатической трансмиссии

    Жесткость в ГСТ зависит от сжимаемости жидкости и соответствия системы компонентов, а именно труб и шлангов. Влияние этих компонентов можно сравнить с эффектом подпружиненного аккумулятора, если бы он был подключен к линии нагнетания через тройник. При небольшой нагрузке, пружина аккумулятора сжимается немного; при больших нагрузках, аккумулятор подвергается существенно большему сжатию и в нем больше жидкости. Этот дополнительный объем жидкости должен подаваться с помощью насоса подпитки.
    Критическим фактором является скорость нарастания давления в системе. Если давление поднимается слишком быстро, темп роста объема на стороне высокого давления (сжимаемости потока) может превысить производительность насоса подпитки, а основном насосе возникает кавитация. Возможно, схемы с регулируемыми насосами и автоматическим управлением наиболее чувствительны к кавитации. Когда в такой системе происходит кавитация, давление падает или пропадает вовсе. Автоматические средства управления могут попытаться отреагировать, что приводит к нестабильной системы.
    Математически, скорость нарастания давления может быть выражено следующим образом:

    dp/dt =Be Qcp/V

    Где:

    Beэффективный объемный модуль системы, кг/см2

    V – объем жидкости на стороне высокого давления см3

    Qcp – производительность насоса подкачки в см3/сек

    Предположим, что ГСТ на рис. 5 соединен стальной трубой 0,6 м, диаметром 32 мм. Пренебрегая объемами насоса и двигателя, V составляет около 480 см3. Для масла в стальных труба, эффективный объемный модуль упругости составляет около 14060 кг/см2. Предполагая, что насос подпитки подает 2 см3/сек., то скорость нарастания давления:
    dp/dt = 14060 × 2/480
    = 58 кг/см2 / сек.
    Теперь рассмотрим влияние системы с длиной 6 м шланга с трехпроводной оплеткой диаметром 32 мм. Завод-изготовитель шланга дает данные Be около 5 906 кг/см2.

    Следовательно:

    dp/dt = 5906 × 2 / 4800 = 2,4 кг/см2 / сек.

    Из этого следует, что увеличение производительности насоса подкачки ведет к уменьшению вероятности возникновения кавитации. Как альтернатива, если резкие нагрузки не частые, можно добавить в линию подкачки гидроаккумулятор. В самом деле, некоторые производители ГСТ делают порт для подключения аккумулятора к цепи подкачки.

    Если жесткость ГСТ низка, и он оснащен автоматическим управлением, то запуск трансмиссии всегда нужно осуществлять с нулевой подачей насоса. Кроме того, скорость механизма наклона диска должна быть ограничена, чтобы предотвратить резкие старты, которые, в свою очередь, могут вызывать скачки давления. Некоторые производители ГСТ предусматривают демпфирующие отверстия с целью сглаживания.

    Таким образом, система жесткости и контроля скорости повышения давления могут быть более важны для определения производительности насоса подкачки, чем просто внутренние утечки насоса и гидромоторов.

    ______________________________________

    Источник: http://hydraulicspneumatics.com



производитель
Hydraulics & Pneumatics


Ещё из раздела рекомендации и статьи

    1.Монтаж Во избежание самопроизвольного переключения двухпозиционные гидрораспределители без пружинного возврата и распределители с фиксацией золотника следует монтировать горизонтально, остальные гидрораспределители так же желательно устанавливать ...
      Несколько потребителей с различными значениями потребления рабочей жидкости Повышение быстродействия ( например , для станков ) За счет установки гидропневматических аккумуля­торов вблизи от гидродвигателей удается легче пре­одолеть инерцию столба ...
        Компенсация сил С помощью аккумуляторов могут компенсировать­ся усилия или перемещения. Это необходимо в том случае, если при непрерывном производственном процессе, например при прокатке, из-за различной по величине нагрузки от прокатываемого ...
          Одной из основных задач гидроаккумуляторов являет­ся накопление (аккумулирование) определенного объе­ма рабочей жидкости, находящейся под давлением. Поскольку жидкость находится под давлением, с аккумуляторами обращаются как с напорными ...
            1. Требования к гидроситеме Тщательно очищенные трубопроводы должны иметь плавные изгибы и надежное уплотнение в месте присоединения к насосу. Размеры трубопроводов и всасывающих фильтров следует выбирать с учетом условия, что скорость рабочей ...
              Клапаны давления делятся на напорные (предохранительные или переливные), редукционные и клапаны разности давлений . Существуют также комбинированные аппараты, выполняющие функции переливного или редукционного клапанов (в зависимости от направления ...
                В последнее на рынке появился очень широкий ассортимент золотниковых гидрораспределителей различных производителей. Во многом они очень похожи - однотипное обозначение и (если не всматриваться в детали) внешний вид. Различие лишь в цене. Низкая цена ...
                  № Неполадки Возможные причины Способ устранения 1 Насос не подает жидкость в систему Неправильное направление вращения вала насоса Изменить вращение вала В баке мало рабочей жидкости Долить жидкость до отметки маслоуказателя Засорился всасывающий ...
                    В современных машинах, и в частности в системах автоматизации производственных процессов, наряду с гидромеханизмами применяются пневмомеханизмы (пневмоприводы), основанные на использовании в качестве рабочей среды сжатого или разреженного воздуха. С ...
                      Радиально поршне­вые насосы типа HP (НП) рассчитаны на производительность 100, 200, 300 и 400 л/мин и на рабочее давление 100—200 кгс/см 2 . Основные недостатки насосов этой конструкции: большие габаритные размеры и масса (отношение массы к мощности ...
                        Эксплуатационные качества гидрораспределителя оцениваются по следующим критериям: - предел динамической характеристики - предел статической характеристики - потери давления - утечки (для гидрораспределителей золотникового типа) - быстродействие ...
                          Наступило лето и началась «горячая пора» для гидравлических систем различной техники и станочного оборудования. Основная проблема, с которой приходится часто сталкиваться, особенно весной и в начале лета, это перегрев гидравлики. За зиму накопились ...


                          В кратчайшие сроки поставим продукцию от любого производителя.
                          Поможем Вам подобрать аналоги и заменим устаревшие элементы гидравлики и пневматики.
                          Модернизируем гидропривод в соответствии с современными требованиями и Вашими пожеланиями.
                          На всю продукцию, незвависимо от производителя, мы даем реальную гарантию 18 месяцев.


                          © 2024 БелCИ-ГП Автоматика
                          Сайт работает на платформе Nestorclub.com